

Hydrogen from Water in a Novel Recombinant Oxygen-Tolerant Cyanobacterial System

Qing Xu and Hamilton O. Smith, J. Craig Venter Institute Pin-Ching Maness, NREL

June 12, 2008

Project ID # PD32

This presentation does not contain any proprietary, confidential information, or otherwise restricted information

J. Craig Venter

Overview

Timeline

- Project start date: 5-01-05
- Project end date: 4-30-10
- Percent complete: 40%

Budget

- Total project funding
 - DOE share: \$1.26M for NREL
 - DOE share: \$1.62M for JCVI
 - JCVI share: \$720K
- Funding received for FY07
 - \$400K for JCVI
 - \$300K for NREL
- Funding for FY08
 - \$500K for JCVI
 - \$600K for NREL

J. Craig Venter

INSTITUTE

Barriers

- Barriers addressed
 - Production Barrier Z:

Continuity of H₂ production

Partners

- J. Craig Venter Institute
- National Renewable Energy Laboratory
- Univ. Szeged, Hungary
- Vanderbilt University

Objective

Develop an O₂-tolerant cyanobacterial system for continuous light-driven H₂ production from water

Approach: transfer O_2 -tolerant hydrogenases into cyanobacteria to overcome the hydrogenase O_2 -sensitivity issue

J. Craig Venter

Milestones

Month/Year	Milestone
June-09	<i>Task 1.</i> Identify hydrogenase gene sequences through metagenomic analysis of marine microbes from the oceans.
Sept-09	<i>Task 1.</i> Identify novel functional hydrogenases from environmental samples
Sept-07	<i>Task 2.</i> Make plasmid constructs for transferring hydrogenase genes into cyanobacteria
Dec-08	Task 2. Verify hydrogenase expression

J. Craig Venter

Technical Approach (JCVI)

Task 1. Identifying novel O₂-tolerant hydrogenases through metagenomic analysis of marine microbes in the global ocean and transferring the hydrogenases into cyanobacteria

Sorcerer II Expedition: a Global Ocean Sampling Project accomplished by the Venter Institute

J. Craig Venter

Searched metagenomic data of the Global Ocean Sampling for novel NiFe-hydrogenases

Number of hydrogenase sequences

From the Sargasso Sea sampling Site:

- Seven novel NiFe-hydrogenases were identified by using Hidden Markov Models.
- One novel hydrogenase shows strong homology to *T. roseopersicina* O₂-stable hydrogenase and has been studied in details.

Cloned and expressed the genes of a novel environmental NiFe-hydrogenase homologous to a known O₂-tolerant hydrogenase from *Thiocapsa roseopersicina* (60% identity to the large subunit and 64% to the small subunit)

Expression vector pHynDHSL transferred to *T. roseopersicina*:

- Transferred into *Thiocapsa* through conjugation
- Self-replicated in *T. roseopersicina*
- Expression of Hyn's genes *hynD/hupH/hynS/*hynL is driven by promoter P_{crtD}

Technical Accomplishments - JCVI Detected heterologous expression of the novel NiFe-hydrogenase in *T. roseopersicina* on the levels of RNA and protein

(+) CON: *T. roseopersicina* wild-type strain
(-) CON: *T. roseopersicina* GB112131 strain (ΔHox, ΔHyn, and ΔHup)
HynDHSL: *T. roseopersicina* GB112131 strain containing pHynDHSL

Rabbit polyclonal antibody specific for T. roseopersicina HynL was used for Western blotting

Technical Accomplishments - JCVI Detected H₂-evolution and H₂-uptake activities of the novel hydrogenase that was heterologously expressed in *T. roseopersicina*

in vitro H₂ evolution activity assay

Artificial electron donor: reduced methyl viologen (blue)

in vitro H_2 uptake activity assay

Artificial electron receptor: oxidized benzyl viologen (colorless)

(-) Control: *T. roseopersicina* GB112131 strain ((Δ Hox, Δ Hyn, and Δ Hup) HynDHSL: *T. roseopersicina* GB112131 transformed with pHynDHSL

Heterologous novel hynD complemented Thiocapsa hynD in hynD mutant

Restored the cleavage of Pre-HynL:

- **1.** *T. roseopersicina* wild type strain.
- **2.** *T. roseopersicina hynD* mutant ($\Delta hynD$).
- **3.** *T. roseopersicina hynD* mutant ($\Delta hynD$) complemented with heterologous novel hynD.

Technical Approach (JCVI)

Task 2.1. Transferring a known O₂-tolerant NiFe-hydrogenase from *T. roseopersicina* into cyanobacterium *Synechococcus sp* PCC7942

- Phototrophic purple sulfur bacterium *Thiocapsa roseopersicina* carries an O₂-tolerant and thermal-stable hydrogenase (Hyn).
- The Thiocapsa hydrogenase Hyn displays a half-life of 6 days in air.
- Structural and accessory genes encoding the *Thiocapsa* hydrogenase are cloned.

- Structural subunit gene: *hynS* and *hynL*
- Electron transfer subunit gene: isp1 and isp2
- Accessory gene: hynD, hupK, hypC1 and hypC2

Constructed a vector system to transfer the structural and accessory genes of *Thiocapsa* O₂-tolerant hydrogenase Hyn to *S. sp* PCC7942

 P_{Trc} : an IPTG-inducible promoter; Hyn's structural genes: *hynS* and *hynL* (in green); Hyn's essential accessory genes: *hynD*, *hupK*, *hypC*₁ and *hypC*₂ (in red)

- Through homologous DNA recombination, the hydrogenase Hyn's genes can be integrated into the cyanobacterial chromosome.
- After being transferred into S. sp PCC7942, expression of the hydrogenase genes is under control of an IPTG-inducible promoter.

Reached the Milestone (09/07): *Thiocapsa* hydrogenase genes have been cloned into an expression vector to create construct pHyn3.

Integrated *Thiocapsa* hydrogenase Hyn's structural and accessory genes into the chromosome of cyanobacterium *S. sp* PCC7942

Southern Blotting Confirmed the integration of Hyn's genes in recombinant strains

Thiocapsa Hyn's gene cassette integrated into the chromosome of S. sp PCC7942

Confirmed IPTG-inducible expression of O₂-tolerant hydrogenase Hyn in recombinant *Synechococcus sp* PCC7942 strain Hyn3

- 1. S. sp PCC7942 wild type strain
- 2. Recombinant S. sp PCC7942 Hyn3

Western blotting was performed by using rabbit polyclonal antibody specific for HynL.

Reached the Milestone (12/08): *Thiocapsa* hydrogenase expression has been verified in recombinant *S. sp* PCC7942 strain Hyn3.

Examined the location of heterologously expressed O₂-tolerant hydrogenase in a recombinant *S. sp* PCC7942 Hyn3 strain

It can be recognized by membrane targeting and translocation pathway.

- 1. S. sp PCC7942 wild type strain
- 2. Recombinant S. sp PCC7942 strain Hyn3

Hetero-expressed Hyn is a membrane-bound hydrogenase in the Hyn3 strain.

Technical Approach (NREL)

Task 2.2. Transfer an O₂-tolerant NiFe-hydrogenase from the bacterium *Rubrivivax gelatinosus* CBS into the cyanobacterium *Synechocystis* PCC6803

NREL will simultaneously develop *E. coli* as the host: (1) serving as a model with more available tools, and (2) DOE funding issue, with funds from Florida Intl. Univ.

Technical Accomplishment - NREL Cloned hydrogenase genes for transfer into *Synechocystis* 6803

pPETE features

copper-regulated (*petE* promoter)

neutral-site for integrating foreign genes into its chromosomes

*With and without affinity tag

Meeting Milestone (9/07): Hydrogenase genes *cooLXUH* were cloned in the *Synechocystis* 6803 expression vector (Prof. Burnap, Oklahoma State Univ.)

 Also confirmed an alternative plasmid pRL1342, suitable for expressing foreign genes in *Synechocystis* (Prof. C. P. Wolk, Michigan State Univ.)

Technical Accomplishment - NREL Hydrogenase Catalytic Subunit Expressed in *E. coli*

- cooH is fused with a Strep II affinity tag for affinity purification
- CooH (42 kDa) is detected in *E. coli* following IPTG induction
- Tagged protein was purified via affinity chromatography and stained with Amino Black
- Protease digestion/mass spectrometry revealed the 42 kDa protein as CooH, the hydrogenase catalytic subunit

Amino Black staining

-19 BCCP

Technical Accomplishment - NREL Hydrogenase Small Subunit Expressed in *E. coli*

- A hydrogenase-free *E. coli* strain (F. Sargent) was modified for IPTG induction
- This FTD147(DE3) strain was transformed with <u>10</u> R. gelatinosus hydrogenase structural and assembly genes (cooLXUH and hypABCDEF)*
- Hydrogenase antibodies generated and hydrogenase protein expression verified in this transgenic *E. coli*.
- These antibodies will be used to confirm hydrogenase expression in Synechocystis

Lanes

- 1. E. coli control
- 2. E. coli transformed with R. gelatinosus hydrogenase genes
- 3. R. gelatinosus, hydrogenase not induced
- 4. R. gelatinosus, hydrogenase induced

Toward meeting Milestone (12/08): Tools development to verify hydrogenase expression

* Collaboration with Florida Intl. Univ. (PDP 7)

Future Work

• JCVI

- Further characterize the novel environmental hydrogenase that was heterologously expressed in *Thiocapsa roseopersicina*
- Transfer more accessory genes of *Thiocapsa* O₂-tolerant hydrogenase into cyanobacterium *S. sp* PCC7942 to express a active hydrogenase in the host

• NREL

- The *R. gelatinosus* CBS hydrogenase genes will be transformed into Synechocystis (pPETE plasmid) and protein expression verified using their respective antibodies.
- Test hydrogenase expression using alternative plasmid (pRL1342)

J. Craig Venter

Summary

• JCVI

- 1. The GOS sequences were searched for novel NiFe-hydrogenases. A novel NiFe-hydrogenase homologous to *Thiocapsa* O₂-tolerant hydrogenase was cloned from the Sargasso Sea samples.
- 2. Environmental DNA encoding this hydrogenase was converted into a functional hydrogenase with both H_2 evolution and uptake activities.
- **3.** The heterologous novel protease HynD complemented *Thiocapsa* HynD in *Thiocapsa hynD* mutant.
- **4.** The genes of *Thiocapsa* O₂-tolerant NiFe-hydrogenase were transferred into *S. sp* PCC7942. A membrane-bound hydrogenase was expressed in the recombinant cyanobacterium upon IPTG induction.

• NREL

- Cloned four O₂-tolerant hydrogenase genes into a pPETE plasmid for expression in Synechocystis
- 2. Verified that O_2 -tolerant hydrogenase were expressed in a transgenic *E. coli* strain